Pembagian Tugas Matakuliah Seminar Matematika

Posted: 13/03/2012 in Info Jurusan

Pembagian Tugas Matakuliah Seminar Matematika Kelas 01 (Pagi):

Kelompok I: Hal 461 – 466

A. Uniform Convergence: Def A, Def B, Def B’, Def C.

Kelompok II: Hal 466 – 471

Theo A, Theo B, Def D, Theo C, B. Functions of Two Real Variables; the Lipschitz Condition: Def E, Def F, Def G, Theo D, Def H.

Kelompok III: Hal 471 – 472, 473 – 475

Theo E, A. The Basic Problem and a Basic Lemma: Def, Lemma,

Kelompok IV: Hal 475 – 481

B. The Existence and Uniqueness Theorem and Its Proof: Theo 10.1

Kelompok V: 481 – 487

C. Remarks and Examples, D. Continuation of Solutions.

Kelompok VI: 487 – 492

Theo 10.2, A. Dependence on Initial Conditions: Theo 10.3.

Kelompok VII: 492 – 497

B. Dependence on the Function f: Theo 10.4, A. The General Case: Def, Theo 10.5

Kelompok VIII: 497 – 503

Def, B. The Linear Case, Lemma, Theo 10.7, Theo 10.8. COROLLARY.

Kelompok IX: 509 – 514

Theo 11.1, 11.2 BASIC THEORY OF THE HOMOGENEOUS LINEAR SYSTEM, COROLLARY TO THEOREM 11.1, THEOREM 11.2, DEFINITION, THEOREM 11.3,

Kelompok X: 514 – 519

Theo 11.4, Theo 11.5, Theo 11.6, Def, Theo 11.7

Ketentuan tugas:

  1. Terjemahkan dan ketik dalam format word, untuk semua kelompok kumpul terjemahan tanggal 27 Maret 2012.
  2. Apabila belum mengumpul makalah pada tanggal yang ditentukan nilai tugas akan dikurangi.
  3. Presentasi dimulai tanggal 27 Maret 2012, siapkan presentasinya dalam format power point. Siap-siap maju kelompok 1 – 3.
  4. Mahasiswa harus menyiapkan LCD dan laptopnya paling lambat pukul 07.45.
  5. Program baca file Eks. djvu dan bisa mengkonversi ke pdf download di sini

 

Kelas 06 (Sore)

Kelompok I: 519 – 523

THEOREM 11.8, DEFINITION, THEOREM 11.9.

Kelompok II: 524 – 528

THEOREM 11.10, THEOREM 11.11

Kelompok III: 528 – 530, 533 – 535

DEFINITION, THEOREM 11.12, 11.4 THE NONHOMOGENEOUS LINEAR SYSTEM: THEOREM 11.13.

Kelompok IV: 535 – 539

DEFINITION, THEOREM 11.14.

Kelompok V: 539 – 542, 543

THEOREM 11.15, A. Fundamental Results, THEOREM 11.16.

Kelompok VI: 544 – 548

COROLLARY, THEOREM 11.17, COROLLARY TO THEOREM 11.17.

Kelompok VII: 548 – 552

THEOREM 11.18, B. Fundamental Sets of Solutions, DEFINITION, DEFINITION, DEFINITION, DEFINITION, THEOREM 11.19, DEFINITION, THEOREM 11.20

Kelompok VIII: 552 – 555, 558 – 559

THEOREM 11.21, COROLLARY TO THEOREM 11.21, DEF, THEO 11.22, THEOREM 11.23, A. More Wronskian Theory, THEO 11.24,

Kelompok IX: 559 – 563

THEO A, THEO 11.25, THEO 11.26, THEO 11.27.

Kelompok X: 563 – 567

THEO 11.28, B. Reduction of Order, 11.29,

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s